

MECÂNICA E ESTRUTURAS GEODESICAS II

FLAMBAGEM

PROF. DR. CARLOS AURÉLIO NADL

Buckling = FLAMBAGEM Study: "Buckling" Relative Displacement, magnitude Buckling Mode 8_x-Load Factor: 20.62 Study: "Buckling" Relative Displacement, magnitude Buckling Mode 5 - Load Factor: 16.75 0.0009261 0.0007938 0.0006615 0.0005292 - 0.0003969 - 0.0002646 - 0.0001323

0.0009513

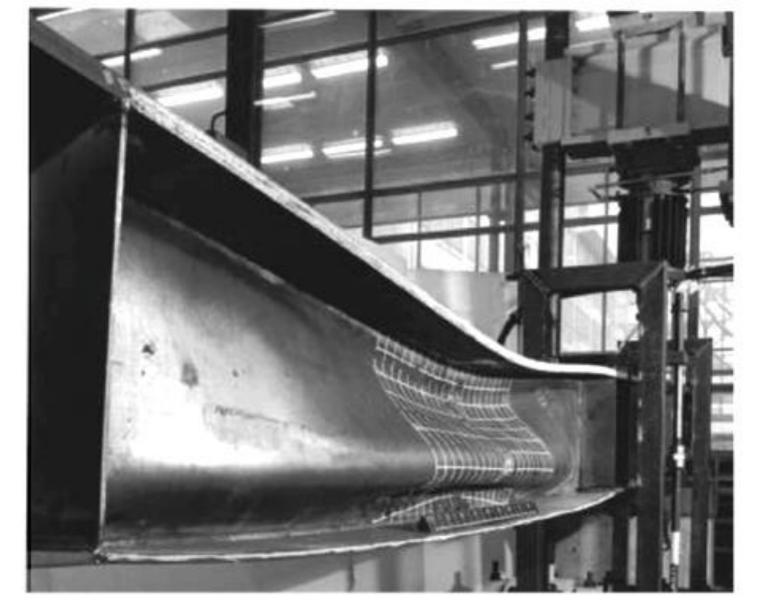
0.0008154

0.0006795

0.0005436

0.0004077

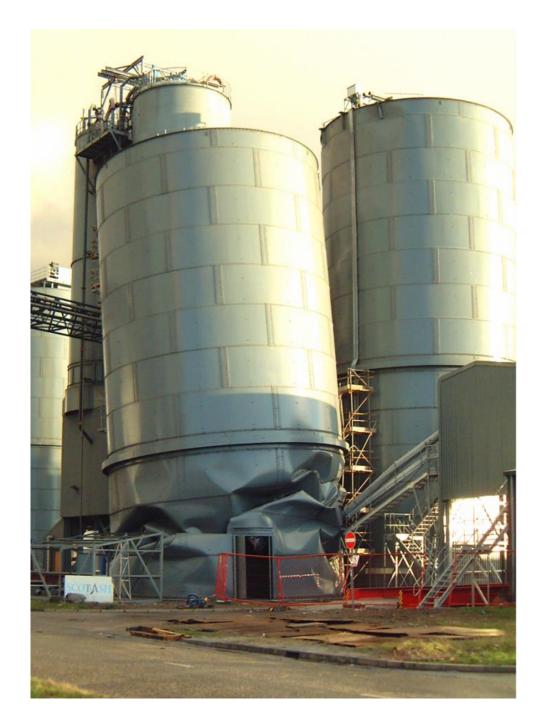
0.0002718


0.0001359

FONTE: AutoFEM Buckling Analysis

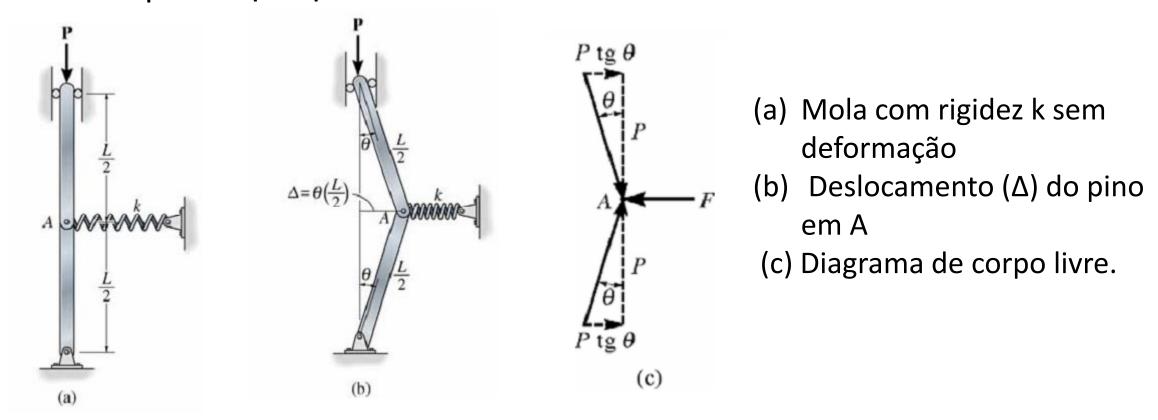
Flambagem em trilho ferroviário (tala de junção)

Ensaio em laboratório de flambagem vertical em viga


Fonte: J. Braz. Soc. Mech. Sci. vol.23 no.4 Rio de Janeiro 2001



Acidentes ocasionados por flambagem


Flambagem em tanques cilindricos

CARGA CRÍTICA (P_{CR})

É a carga axial máxima que uma coluna pode suportar antes de ocorrer a flambagem.

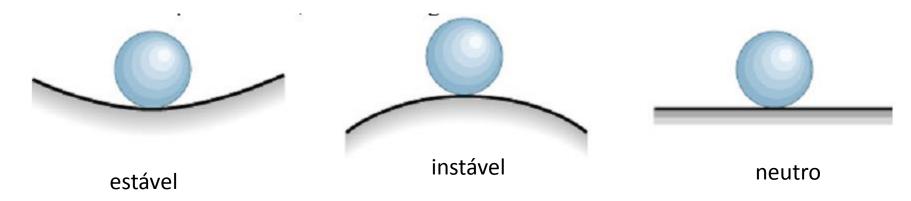
Considere o mecanismo a seguir formado por duas barras sem peso, rígidas e acopladas por pinos em suas extremidades

Fonte: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI

TIPOS DE EQUILÍBRIO

Equilíbrio estável Equilíbrio estável

$$P < \frac{\kappa \iota}{4}$$


Equilíbrio Instável

$$P > \frac{\kappa \iota}{4}$$

Equilíbrio Neutro - Carga Critica

$$P = \frac{kl}{4}$$

As três condições de equilíbrio representadas são similares àquelas de uma bola colocada sobre uma superfície lisa,

PEÇAS SUJEITAS A FLAMBAGEM

Função do comprimento da peça (reduzido se a altura for pequena).

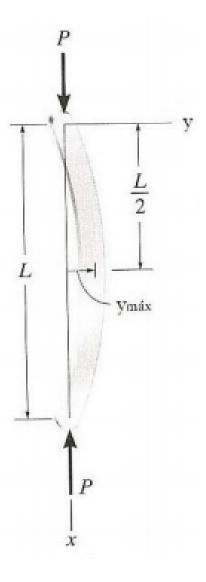
Quanto maior for a espessura da peça comprimida, menor a tendência a flambar.

Quanto mais flexível for o material (menor E), mais fácil é a ocorrência da flambagem.

Leonhard Euler (1744) a primeira formulação de uma quantificação do limite que se pode colocar uma peça comprimida, para que ela não flambe.

Definições

Coluna: elementos estruturais compridos e esbeltos, sujeitos a uma força de compressão axial coluna ideal: é uma coluna perfeitamente reta antes da carga. A carga é aplicada no centroide da seção transversal. Flambagem: A deflexão lateral que ocorre na coluna Carga crítica: carga axial máxima que uma coluna pode suportar quando está na iminência de sofrer flambagem P_{cr}.


$$EI\frac{d^2y}{dx^2} = M = -Py$$
$$\frac{d^2y}{dx^2} + \left(\frac{P}{EI}\right)y = 0$$

Essa equação diferencial linear homogênea de segunda ordem com coeficientes constantes de solução geral é:

$$y = C_1 sen\left(\sqrt{\frac{P}{EI}}x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}}x\right)$$

Condições de contorno: y=0 em x=0, $C_2=0$ e y=0 em x=L:

$$0 = C_1 sen\left(\sqrt{\frac{P}{EI}}L\right)$$

$$0 = C_1 sen\left(\sqrt{\frac{P}{EI}}L\right)$$

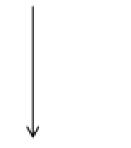
$$C_1 = 0 \to y = 0$$

$$sen\left(\sqrt{\frac{P}{EI}}L\right) = 0$$

$$\left(\sqrt{\frac{P}{EI}}L\right) = n\pi$$

$$P = \frac{n^2 \pi^2 EI}{I^2} \qquad n = 1, 2, 3....$$

O menor valor de P é obtido com n=1, de modo que a carga crítica é:


$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

$$\sigma = \frac{P}{A}$$

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

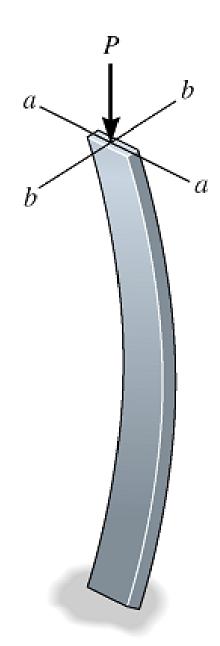
$$\sigma_{cr} = \frac{\pi^2 E}{\left(L/i\right)^2}$$

$$P_{cr} \longrightarrow carga crítica ou carga axial$$

I → menor momento de inércia para a área da seção transversal

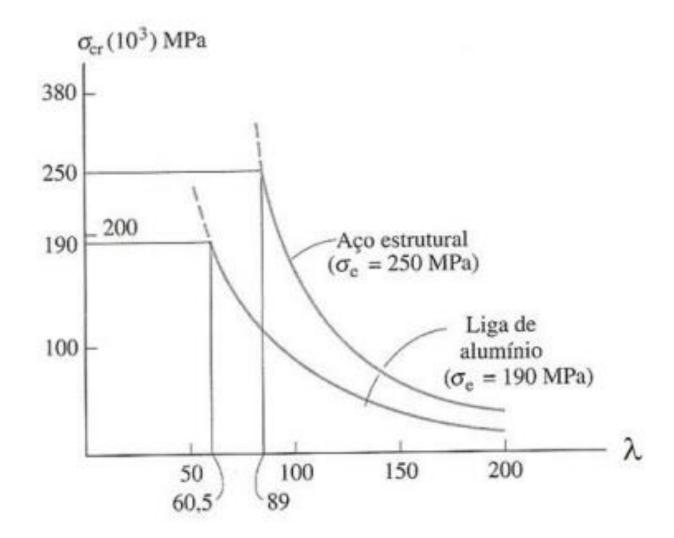
L → comprimento da coluna sem apoio

$$P_{cr} = \frac{\pi^2 E(Ai^2)}{L^2}$$


i → menor raio de giração da coluna
$$i = \sqrt{\frac{I}{A}}$$

$$\left(\frac{P}{A}\right)_{cr} = \frac{\pi^2 E}{\left(L/i\right)^2}$$

 $\left(\frac{P}{A}\right)_{cr} = \frac{\pi^2 E}{\left(L/i\right)^2}$ $\lambda = L/i \rightarrow \text{indice de esbeltez - medida da flexibilidade}$ da columa


A flambagem ocorrerá em torno do eixo principal da seção transversal que tenha o menor momento de inércia (o eixo menos resistente).

No pilar representado na figura ao lado, a flambagem ocorrerá torno do eixo a-a e não do eixo b-b

Gráfico Tensão crítica x λ

$$\left(\frac{P}{A}\right)_{cr} = \frac{\pi^2 E}{\lambda^2}$$

EXERCÍCIO

Um tubo de aço A-36 sem costura com diâmetro nominal de 33,4mm com 5,0 m de comprimento com 4,6mm de espessura será utilizado estruturalmente como pilar, afixado estruturalmente por pinos de aço. Determine a carga axial máxima admissível com a qual a coluna pode sofrer flambagem.

Sendo módulo de elasticidade E= 210Gpa Tensão de escoamento σ_e = 250Mpa

1) Cálculo do menor momento de inércia da seção transversal

d=D-e -> d= 0,0334-0,0046
$$I = \frac{\pi(D^4 - d^4)}{64}$$

$$I = 2,73173x10^{-8} \text{ m}^4$$

$$I = \frac{\pi(0,0334^4 - 0,0288^4)}{64}$$

- 2) Área da secção transversal
- D = diâmetro externo da seção = 0,0334m
- d = diâmetro interno da seção =0,0288
- $A = 0,000225 \text{m}^2$

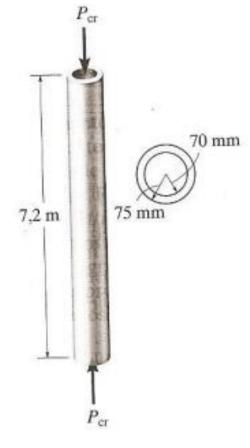
$$A = \frac{\pi D^2}{4} - \frac{\pi d^2}{4}$$

$$A = \frac{\pi 0,0334^2}{4} - \frac{\pi 0,0288^2}{4}$$

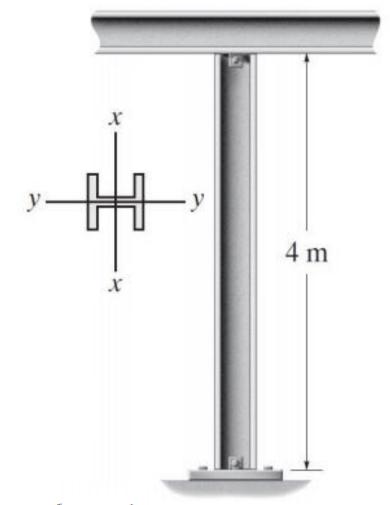
3) Cálculo da carga crítica P_{cr}

$$->$$
 E= 210 000 000 kN/m²

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$
 $P_{cr} = \frac{\pi^2 x 210000000x2,73173x10-8}{5^2}$


$$P_{cr} = 2,26 \text{ kN}$$

Exercício Proposto


Um tubo de aço A-36 com 7,2m de comprimento e a seção transversal mostrada ao lado deve ser usado como uma coluna presa por pinos na extremidade. Determine a carga axial admissível máxima que a coluna

pode sofrer flambagem. E=200 Gpa

Resposta: $P_{cr} = 228,2 \text{ kN}$

O elemento estrutural A-36 W200 X 46 de aço mostrado na figura ao lado deve ser usado como uma coluna acoplada por pinos. Determine a maior carga axial que ele pode suportar antes de começar a sofrer flambagem ou antes que o aço escoe.

$$A = 5890 \text{ mm}^2$$
, $I_x = 45,5 \times 10^6 \text{ mm}^4$, $I_y = 15,3 \times 10^6 \text{ mm}^4$
 $\sigma_c = 250 MPa$, $E = 200 GPa$

Ocorrerá flambagem em torno do eixo y-y (menor):

$$P_{cr} = \frac{\pi^2 EI}{L^2} = \frac{\pi^2 (200 \times 10^3 N / mm^2) (15,3 \times 10^6 \text{ mm}^4)}{(4000 mm)^2} = 1887,6 \times 10^3 N = 1887,6 kN$$

Quando totalmente carregada, a tensão de compressão média na coluna é:

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{1887,6 \times 10^3 N}{5890 \text{ mm}^2} = 320,5 \frac{N}{\text{mm}^2} = 320,5 MPa$$

Visto que a tensão ultrapassa a tensão de escoamento,

$$250 \frac{N}{\text{mm}^2} = \frac{P}{5890 mm^2} : P = 1472, 5 \times 10^3 N = 1472, 5kN$$

Resposta: P = 1472,5kN

COLUNAS COM VÁRIOS TIPOS DE APOIO

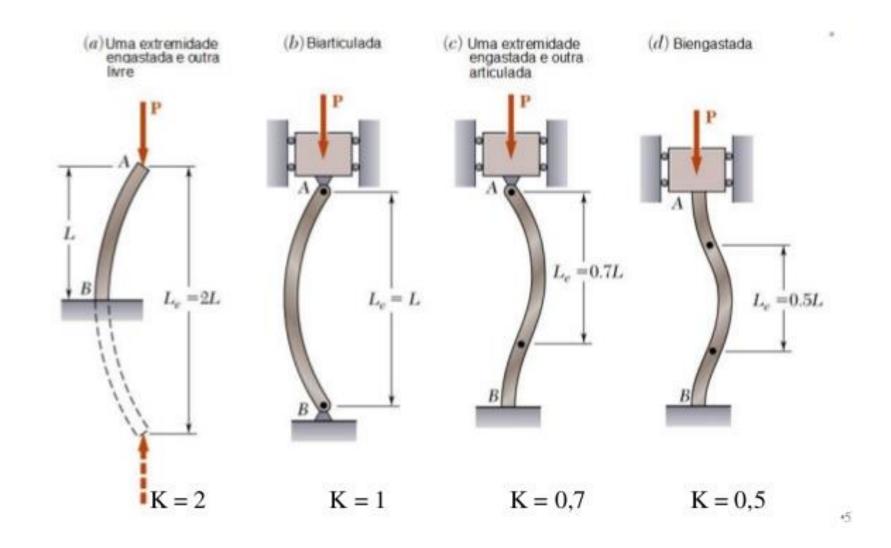
A fórmula de Euler foi deduzida para uma coluna com extremidades acopladas por pinos ou livres para girar.

Colunas podem ser apoiadas de outro maneira

L = comprimento efetivo da coluna.

K = fator de comprimento efetivo (coeficiente dimensional)

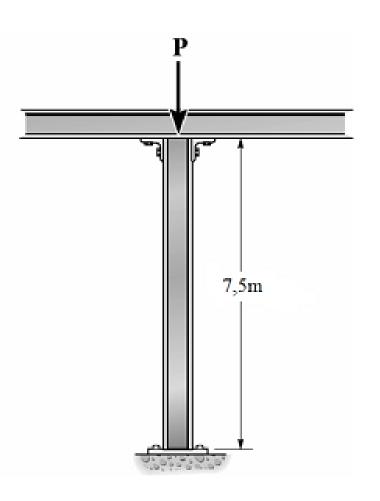
L = comprimento da coluna


 $\lambda = L_e/i =$ índice de esbeltez efetivo

$$L_{e} = k.L$$

$$P_{cr} = \frac{\pi^{2}EI}{L_{e}^{2}}$$

$$\sigma_{cr} = \frac{\pi^{2}E}{(L_{e}/i)^{2}}$$


COMPRIMENTO EFETIVO DE FLAMBAGEM

O elemento estrutural W200x100 é feito de aço A-36 e usado como uma coluna de 7,5m de comprimento. Podemos considerar que a base dessa coluna está engastada e que o topo está preso por um pino. Determine a maior força axial P que pode ser aplicada sem provocar flambagem. Considere:

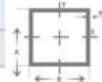
E = 200GPa $I_x = 113(10^6)mm^4$ $I_y = 36,6(10^6)mm^4$ $\sigma_e = 250MPa$ $A = 12700mm^2$

Resposta: P_{crit}=2621,2kN

Propriedades dos Materiais Utilizados em Engenharia

Materiais		Densidade (mg/m³)	Módulo de elasticidade		Tensão de escoamento (MPa)			Tensão última (MPa)			Alongamento	de de Poisson	coeficiente de
			E (GPa)	transversal G (GPa)	tração	compressão	cisalhamento	tração	compressão	cisalhamento	% em corpo de prova de 50mm	de Poisson	OVERSES TORRES
Ligas de Aluminio Forjado	2014-T6	2,79	73,1	27	414	414	172	469	469	290	10	0,35	23
	6061-T6	2,71	68,9	26	255	255	131	290	290	186	12	0,35	24
Ligas de Ferro Fundido	cinza ASTM 20	7,19	67,0	27	-	-	-	179	669	-	0,6	0,28	12
	Maleável ASTM A-197	7,28	172	68	-	-	-	276	572	-	5	0,28	12
Ligas de Cobre	Latão vermelho C83400	8,74	101	37	70,0	70,0	-	241	241	-	35	0,35	18
Ligas de Cobie	Bronze C86100	8,83	103	38	345	345	-	655	655	-	20	0,34	17
Ligas de Magnésio	Am 1004-T61	1,83	44,7	18	152	152	-	276	276	152	1	0,30	26
Ligas de Aço	Estrutural A-36	7,85	200	75	250	250	-	400	400	-	30	0,32	12
	Inoxidavel 304	7,86	193	75	207	207	-	517	517	-	40	0,27	17
	Aço-ferramenta L2	8,16	200	75	703	703	-	800	800	-	22	0,32	12
Ligas de Titânio	Ti-6A1-4V	4,43	120	44	924	924	-	1000	1000	-	16	0,36	9,4

Materiais		Densidade (mg/m³)	Módulo de elasticidade		Tens	Tensão de escoamento (MPa)			Tensão última	a (MPa)	Alongamento	Confiniento	coeficiente de
			E (GPa)	transversal G (GPa)	tração	compressão	cisalhamento	tração	compressão	cisalhamento	% em corpo de prova de 50mm	de Poisson	expansão termica
Concreto	Baixa resistência	2,38	22,1	-	-	-	12	-	-	-	-	0,15	11
	Alta resistência	2,38	29,0	-	-	-	38	-	-	-	-	0,15	11
Plástico Reforçado	Keviar 49	1,45	131	-	-	-	-	717	483	20,3	2,8	0,34	-
	30% de vidro	1,45	72,4	-	-	-	-	90	131	-	-	0,34	-
Madeira Estrutural de Alta Qualidade	Abeto Douglas	0,47	13,1	-	-	-	-	2,1	26	6,2	-	0,29	-
	Abeto Branco	3,60	9,65	-	-	-	-	2,5	36	6,7	-	0,31	-


Fonte HIBBELER, R.C. Resistência dos materiais. São Paulo: Pearson Prentice Hall, 2004.

Tipo / Aplicação		Normas									
Tipo / Api	icação	ABNT > Brasil	DIN > Alemanha	ASTM > U.S.A	BSI > Inglaterra						
	Classe Leve	NBR 559 SCH 10 NBR 5580 L	-	A 53 SCH 10 L	BS 1387 L						
Condução Preto ou Galvanizado Água, gás, vapor, ar comprimido,	Classe Média	NBR 5580 M NBR 5590 SCH 40 NBR 5885*	2440 	A 53 SCH 40 M - A 120*	BS 1387 M - -						
ar comprimido, fluidos não corrosivos	Classe Pesada	NBR 5580 P NBR 5590	2441	A 53 SCH 80	_						
	Alta pressão	NBR 6321	-	A 106	147						
	Eltrodutos > Proteção de fios e cabos elétricos		-	ANSI C.80.1	-						
Estruturais > Estruturas, andaimes e cercas		NBR 8261 -	-	A 500 -	BS 6363 BS 1139						
Mecânicos > Fins industriais, trefiladores, standard, especiais		NBR 6591	2394	A 513	-						
Precisão > Laminado indústrias auto		NBR 5599	2393	A 513	175						
Troca Térmica > Caldeiras, condensadores e permutadores de calor		NBR 5585 NBR 5595 NBR 5596	2458/1615 2458/1626 2458/1628	A 214 A 178 A 226	-						
Petroliferos (Pipelines)	API 5 L / API 5 CT									

Cálculo de peso por metro

D - e . e . 0,02466 = peso teórico p/ mt

A . 1,27 - e . e . 0,02466 = peso teórico p/ mt

 $\frac{A+B}{2}$ = peso teórico p/ mt

^{*} Estas normas estão canceladas em seus Institutos de origem, embora possam ser fabricadas sob consulta.