GRAVIDADE NORMAL

(Prof. Sílvio R.C. de Freitas)

Considerando a expressão do Geopotencial em componentes harmônicas como:

$$W(r,\varphi,\lambda) = \frac{GM}{r} \left[1 + \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r} \right)^{n} \left(C_{nm} \cos m\lambda + S_{nm} senm\lambda \right) P_{nm} \left(sen\varphi \right) \right] + \frac{1}{3} \omega^{2} r^{2} \left[1 - P_{20} \left(sen\varphi \right) \right]$$

Com o desenvolvimento desta expressão até o grau 2 e ordem zero, portanto adotando somente o coeficiente harmônico $C_{2,0}$, obtém-se uma grande aproximação do modelo do esferopotencial U para o modelo Terra normal, ou seja, o modelo do campo da gravidade baseado no elipsóide de referência ao qual se atribui a mesma velocidade angular e mesma massa da Terra, considerando-se sua superfície equipotencial com esferopotencial U_0 . Sendo a gravidade normal dada pelo gradiente do esferopotencial γ = grad U, obtém-se do desenvolvimento mencionado o valor da gravidade normal e valores para latitudes específicas como a do pólo e a do equador. Cabe ser destacado que o achatamento é relacionado com o coeficiente $C_{2,0}$ do desenvolvimento até o grau 2 na forma:

$$J_{2=} - C_{2,0} = \frac{3}{2}f\left(1 - \frac{1}{2}f\right) - \frac{1}{3}m(1 - \frac{3}{2}m - \frac{2}{7}f)$$

A constante geodésica J_2 é também denominada de fator dinâmico de forma.

A gravidade normal (ou teórica) no nível da superfície elipsóidica, para uma dada latitude, pode ser calculada via o Teorema de Clairaut:

$$\gamma = \gamma_e (1 + \beta sen^2 \varphi + \beta' sen^2 2\varphi)$$

Ou pela fórmula de Somigliana:

$$\gamma = \frac{a\gamma_e \cos^2 \varphi + b\gamma_p \sin^2 \varphi}{(a^2 \cos^2 \varphi + b^2 \sin^2 \varphi)^{1/2}}$$

Os parâmetros envolvidos são apresentados em tabela na seqüência para os SGR67 e SGR 80.

O valor da gravidade normal em uma altitude elipsóidica *h* acima do elipsóide pode ser determinado de forma rigorosa por:

$$\gamma(h) = \gamma - \frac{2\gamma_e}{a}(1 + f + m - 2f sen^2\varphi)h + 3\frac{\gamma_e}{a^2}h^2$$

O segundo e terceiro termos do segundo membro correspondem ao gradiente normal da gravidade normal. Ou de forma simplificada por:

$$\gamma(h) = \gamma - 0.3086h$$

Nas equações apresentadas, f é o achatamento do elipsóide, a e b respectivamente os semi-eixos maior e menor do elipsóide, γ_e a gravidade normal no equador, γ_p a gravidade normal no pólo, e:

$$\beta = \frac{5}{2}m - f - \frac{17}{14}mf$$
 e $\beta' = \frac{f^2}{8} - \frac{5mf}{8}$

Sendo m a relação da força centrífuga por unidade de massa pela gravidade normal no equador dada por:

$$m = \frac{a\omega^2}{\gamma_a} - \frac{3}{2}m^2$$

Constantes	SGR67	SGR80
а	6.378.160m	6.378.137m
b	6 356 774,5161m	6 356 752.3141 m
f	1:298,247 = 0,0033529237	1:298,257 = 0,003 352 813
ω	72.921.151.467 x 10 ⁻¹⁵ rad/s	7 292 115 x 10 ⁻¹¹ rad/s
m	0,003 449 8014	0,003 449 894
γe	978.031,845 mGal	978.033 mGal
γр	983.217,730 mGal	983 218,63685mGal
β	0,005 302 365 5	0,005 302 440 112
β'	-0,000 005 9	-0,000 005 8